
Du code à la faille de sécurité . . .
Éric BERTHOMIER

berthomiereric70@gmail.com
4 janvier 2026

Version 1.1 - Version Stagiaire

Qu’est ce qu’un code source ?

Un code source est un texte lisible et modifiable par l’être humain
qui lui permet de créer un programme.

bonjour.py
#!/usr/bin/python3

print ("Hello World !")

bonjour.c
#include <stdio.h>

int main() {
printf("Bonjour\n");
return 0;

}

Éric BERTHOMIER berthomiereric70@gmail.com

Qu’est ce qu’un code source ?

Un code source est un texte lisible et modifiable par l’être humain
qui lui permet de créer un programme.

bonjour.py
#!/usr/bin/python3

print ("Hello World !")

bonjour.c
#include <stdio.h>

int main() {
printf("Bonjour\n");
return 0;

}

Éric BERTHOMIER berthomiereric70@gmail.com

Interprété

bonjour.py
#!/usr/bin/python3

print ("Hello World !")

Ce programme est un code interprété, il est lu et exécuté au
fur et à mesure par le programme Python.

Sous Windows, le langage le plus utilisé est le PowerShell qui
lui aussi est interprété.
Il est possible d’analyser le code à tout moment et c’est pour
cette raison que les malwares obfusquent le code interprété.

Éric BERTHOMIER berthomiereric70@gmail.com

Interprété

bonjour.py
#!/usr/bin/python3

print ("Hello World !")

Ce programme est un code interprété, il est lu et exécuté au
fur et à mesure par le programme Python.
Sous Windows, le langage le plus utilisé est le PowerShell qui
lui aussi est interprété.

Il est possible d’analyser le code à tout moment et c’est pour
cette raison que les malwares obfusquent le code interprété.

Éric BERTHOMIER berthomiereric70@gmail.com

Interprété

bonjour.py
#!/usr/bin/python3

print ("Hello World !")

Ce programme est un code interprété, il est lu et exécuté au
fur et à mesure par le programme Python.
Sous Windows, le langage le plus utilisé est le PowerShell qui
lui aussi est interprété.
Il est possible d’analyser le code à tout moment et c’est pour
cette raison que les malwares obfusquent le code interprété.

Éric BERTHOMIER berthomiereric70@gmail.com

Obscurantisme

bonjour_obf.py
#!/bin/python3

import base64
exec(base64.b64decode("cHJpbnQoIkhlbGxvIFdvcmxkICEiKQ=="))

Réalise la même chose que le précédent programme.

Éric BERTHOMIER berthomiereric70@gmail.com

Compilé

bonjour.c
#include <stdio.h>

int main() {
printf("Bonjour\n");
return 0;

}

Ce programme est un code source, il ne peut pas être exécuté
tel que.

Pour être exécuter il faut le compiler : gcc -o bonjour
bonjour.c.
Sa forme devient alors parfaitement illisible pour l’être humain.

Éric BERTHOMIER berthomiereric70@gmail.com

Compilé

bonjour.c
#include <stdio.h>

int main() {
printf("Bonjour\n");
return 0;

}

Ce programme est un code source, il ne peut pas être exécuté
tel que.
Pour être exécuter il faut le compiler : gcc -o bonjour
bonjour.c.

Sa forme devient alors parfaitement illisible pour l’être humain.

Éric BERTHOMIER berthomiereric70@gmail.com

Compilé

bonjour.c
#include <stdio.h>

int main() {
printf("Bonjour\n");
return 0;

}

Ce programme est un code source, il ne peut pas être exécuté
tel que.
Pour être exécuter il faut le compiler : gcc -o bonjour
bonjour.c.
Sa forme devient alors parfaitement illisible pour l’être humain.

Éric BERTHOMIER berthomiereric70@gmail.com

Exécutable

Il faut alors utiliser des outils spécifiques pour essayer de découvrir
ce que fait le programme.

Éric BERTHOMIER berthomiereric70@gmail.com

Exécutable

Il faut alors utiliser des outils spécifiques pour essayer de découvrir
ce que fait le programme.

Éric BERTHOMIER berthomiereric70@gmail.com

Du code à l’EXE

Éric BERTHOMIER berthomiereric70@gmail.com

Désassembler le programme "bonjour"

Éric BERTHOMIER berthomiereric70@gmail.com

Assembleur

Générer le code "Assembleur" à partir du source : gcc -S.

.file "bonjour.c"

.text

.section .rodata
.LC0:

.string "Bonjour"

.text

.globl main

.type main, @function
main:
.LFB0:

.cfi_startproc
endbr64
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
leaq .LC0(%rip), %rax
movq %rax, %rdi
call puts@PLT
movl $0, %eax
popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.LFE0:
.size main, .-main
.ident "GCC: (Ubuntu 13.3.0-6ubuntu2~24.04

) 13.3.0"
.section .note.GNU-stack,"",@progbits
.section .note.gnu.property,"a"
.align 8
.long 1f - 0f
.long 4f - 1f
.long 5

0:
.string "GNU"

1:
.align 8
.long 0xc0000002
.long 3f - 2f

2:
.long 0x3

3:
.align 8

4:

Éric BERTHOMIER berthomiereric70@gmail.com

SSI

Un programme est donc analysé lors de sa conception à partir de
son code source (qui est lisible par l’humain).

C’est ce qui est réalisé pour les applications Métier par l’équipe de
Jacinthe.

Éric BERTHOMIER berthomiereric70@gmail.com

SSI

Un programme est donc analysé lors de sa conception à partir de
son code source (qui est lisible par l’humain).

C’est ce qui est réalisé pour les applications Métier par l’équipe de
Jacinthe.

Éric BERTHOMIER berthomiereric70@gmail.com

SSI - Quelques raisons. . .

1 Le développeur peut faire une erreur dans son code.

2 Le développeur peut télécharger un élément malveillant qui
n’aura pas été validé auparavant.

3 Ce qui est échangé sur le réseau peut être chiffré et donc
invisible.

4 L’analyste ne peut pas analyser tous les programmes et doit
pouvoir faire confiance (whitelist).

5 . . .

Éric BERTHOMIER berthomiereric70@gmail.com

SSI - Quelques raisons. . .

1 Le développeur peut faire une erreur dans son code.
2 Le développeur peut télécharger un élément malveillant qui

n’aura pas été validé auparavant.

3 Ce qui est échangé sur le réseau peut être chiffré et donc
invisible.

4 L’analyste ne peut pas analyser tous les programmes et doit
pouvoir faire confiance (whitelist).

5 . . .

Éric BERTHOMIER berthomiereric70@gmail.com

SSI - Quelques raisons. . .

1 Le développeur peut faire une erreur dans son code.
2 Le développeur peut télécharger un élément malveillant qui

n’aura pas été validé auparavant.
3 Ce qui est échangé sur le réseau peut être chiffré et donc

invisible.

4 L’analyste ne peut pas analyser tous les programmes et doit
pouvoir faire confiance (whitelist).

5 . . .

Éric BERTHOMIER berthomiereric70@gmail.com

SSI - Quelques raisons. . .

1 Le développeur peut faire une erreur dans son code.
2 Le développeur peut télécharger un élément malveillant qui

n’aura pas été validé auparavant.
3 Ce qui est échangé sur le réseau peut être chiffré et donc

invisible.
4 L’analyste ne peut pas analyser tous les programmes et doit

pouvoir faire confiance (whitelist).

5 . . .

Éric BERTHOMIER berthomiereric70@gmail.com

SSI - Quelques raisons. . .

1 Le développeur peut faire une erreur dans son code.
2 Le développeur peut télécharger un élément malveillant qui

n’aura pas été validé auparavant.
3 Ce qui est échangé sur le réseau peut être chiffré et donc

invisible.
4 L’analyste ne peut pas analyser tous les programmes et doit

pouvoir faire confiance (whitelist).
5 . . .

Éric BERTHOMIER berthomiereric70@gmail.com

Conclusion - Cycle de vie SSI d’un logiciel

Éric BERTHOMIER berthomiereric70@gmail.com

